The links between emotions, bio-regulatory processes, and economic decision-making are well-established in the context of age-related changes in fluid, real-time, decision competency. The objective of the research reported here is to assess the relative contributions, interactions, and impacts of affective and cognitive intelligence in economic, value-based decision-making amongst older adults. Additionally, we explored this decision-making competency in the context of the neurobiology of aging by examining the neuroanatomical correlates of intelligence and decision-making in an aging cohort. Thirty-nine, healthy, community dwelling older adults were administered the Iowa Gambling Task (IGT), an ecologically valid laboratory measure of complex, economic decision-making; along with standardized, performance-based measures of cognitive and emotional intelligence (EI). A smaller subset of this group underwent structural brain scans from which thicknesses of the frontal, parietal, temporal, occipital, cingulate cortices and their subsections , were computed. Fluid (online processing) aspects of Perceptual Reasoning cognitive intelligence predicted superior choices on the IGT. However, older adults with higher overall emotional intelligence (EI) and higher Experiential EI area/sub-scores learned faster to make better choices on the IGT, even after controlling for cognitive intelligence and its area scores. Thickness of the left rostral anterior cingulate (associated with fluid affective, processing) mediated the relationship between age and Experiential EI. Thickness of the right transverse temporal gyrus moderated the rate of learning on the IGT. In conclusion, our data suggest that fluid processing, which involves "online," bottom-up, cognitive processing, predicts value-based decision-making amongst older adults, while crystallized intelligence, which relies on "offline" previously acquired knowledge, does not. However, only emotional intelligence, especially its fluid "online" aspects of affective processing predicts the rate of learning in situations of complex choice, especially when there is a paucity of cues/information available to guide decision-making. Age-related effects on these cognitive, affective and decision mechanisms may have neuroanatomical correlates, especially in regions that form a subset of the human mirror-neuron and mentalizing Ramchandran et al. EIaging systems. While superior decision-making may be stereotypically associated with "smarter people" (i.e., higher cognitive intelligence), our data indicate that emotional intelligence has a significant role to play in the economic decisions of older adults.