The objective of this study is to analyze the growth of wild species of tomato, of the cultivar Redenção and of the respective F1 hybrids of interspecific crossings. We evaluated six wild-type accessions (Solanum pimpinellifolium ‘AF 26970’, S. galapagense ‘LA-1401’, S. peruvianum ‘AF 19684’, S. habrochaites var. hirsutum ‘PI-127826’, S. habrochaites var. glabratum ‘PI-134417’, and S. pennellii ‘LA-716’) and the commercial cultivar Redenção (S. lycopersicum) together with their respective interspecific hybrids. In completely randomized blocks and plots subdivided by time (16, 28, 42, 56, 70, and 84 days after transplanting), we evaluated leaf area (LA), total dry matter (TDM), absolute growth rate (AGR), relative growth rate (RGR) and net assimilation rate (NAR). The distribution of assimilates in the different organs followed different patterns according to genotype. There was a greater accumulation of LA and TDM in the accessions ‘PI-127826’ and ‘PI-134417’ and in the hybrids ‘Redenção’ x ‘PI-127826’ and ‘Redenção’ x ‘PI-134417’. Due to a heterotrophic effect provided by the crossings, there were higher LA, TDM, AGR, RGR and NAR in hybrids than in parent plants. The accessions ‘PI-127826’ and ‘PI-134417’ presented a potential to be donor parents for obtaining tomatoes with a greater capacity of net assimilation and biomass accumulation.