The recent emergence of powerful genomic tools, such as high‐throughput genomics, transcriptomics and metabolomics, combined with the study of gnotobiotic animals, have revealed overwhelming impacts of gut microbiota on the host phenotype. In addition to provide their host with metabolic functions that are not encoded in its own genome, evidence is accumulating that gut symbionts affect host traits previously thought to be solely under host genetic control, such as development and behavior. Metagenomics and metatranscriptomics studies further revealed that gut microbial communities can rapidly respond to changes in host diet or environmental conditions through changes in their structural and functional profiles, thus representing an important source of metabolic flexibility and phenotypic plasticity for the host. Hence, gut microbes appear to be an important factor affecting host ecology and evolution which is, however, not accounted for in life‐history theory, or in classic population genetics, ecological and eco‐evolutionary models. In this forum, we shed new light on life history and eco‐evolutionary dynamics by viewing these processes through the lens of host– microbiota interactions. We follow a three‐level approach. First, current knowledge on the role of gut microbiota in host physiology and behavior points out that gut symbionts can be a crucial medium of life‐history strategies. Second, the particularity of the microbiota is based on its multilayered structure, composed of both a core microbiota, under host genetic and immune control, and a flexible pool of microbes modulated by the environment, which differ in constraints on their maintenance and in their contribution to host adaptation. Finally, gut symbionts can drive the ecological and evolutionary dynamics of their host through effects on individual, population, community and ecosystem levels. In conclusion, we highlight some future perspectives for integrative studies to test hypotheses on life history and eco‐evolutionary dynamics in light of the gut microbiota.