Tuc2009 is a P335-type member of the tailed-phage supergroupLactic acid bacteria are economically important bacteria used in the production of fermented foods such as cheeses, yogurts, and sausages. Tuc2009 is a 38,347-bp lysogenic member of the P335 type of the Siphoviridae supergroup of noncontractile-tailed bacteriophages (GenBank accession no. NC_002703) and was originally identified in Lactococcus lactis subsp. cremoris UC509, a strain used in Cheddar cheese production, following mitomycin C induction (2, 42).Muralytic enzymes or lysins degrade the peptidoglycan (PG) matrix and play essential roles for both phages and bacteria. "Autolysins" is the term used for lysins which are produced by bacteria and involved in cell division, while the term "endolysins" refers to lytic enzymes involved in phage release. Some bacteria also produce lysins which act as class III bacteriocins. Lysins fall into three categories, glycosidases, amidases, and endopeptidases, depending on the type of chemical bond they cleave within the PG. Glycosidases can be further subdivided into the muramidases, glucosaminidases, and transglycosylases (55). Progeny release for many double-stranded-DNA-tailed phages has been shown to employ a lysis system involving one or more holins in conjunction with an endolysin. The holins function by forming pores in the cytoplasmic membrane of the host, thereby abolishing membrane potential and allowing the endolysin to access the PG layer.Lysins exhibit a modular design (16). While a portion (usually the N-terminal part in the case of endolysins) encodes bond cleavage, a second segment is involved in substrate binding. This is believed to help the enzymatic efficiency and specificity of such muralytic enzymes by locating the active motif directly at the site of the substrate and causing endolysins to lyse only those bacteria possessing both the specifically recognized binding region and the target bond of the cleaving domain. It is this specificity of target recognition that could make lysins attractive therapeutic agents. Indeed, studies have demonstrated the usefulness of lysins by specifically lysing streptococci which had colonized mice (38). The lysin is thus said to demonstrate independently functioning domains, as shown for the choline-binding motif of the majority of lysins of Streptococcus pneumoniae and its phages (16) and the endolysin of Tuc2009 (50). Furthermore, the level of homology between these modules from endolysins and autolysins is supportive of the modular theory of phage evolution, as it indicates that the genes encoding such enzymes have arisen as a result of genomic exchange and rearrangement (16).While the cellular PG layer gives structural support to the bacterium, it also represents a formidable barrier across which the phage must transport its DNA during the infection process. Several proteins used by phages infecting gram-negative bacteria to perform this task of "hole punching" have been characterized (45). Phages T4, T7, PRD1, and 6, all of which infect gram-negative ho...