It is often observed that small drops or bubbles detach from the interface separating two co-flowing immiscible fluids. The size of these drops or bubbles can be orders of magnitude smaller than the length scales of the parent fluid mass. Examples are tip-streaming from drops or coaxial jets in microfluidics, selective withdrawal, 'skirt' formation around bubbles or drops, and others. It is argued that these phenomena are all reducible to a common instability that can occur due to a local convergence of streamlines in the neighbourhood of a zero-vorticity point or line on the interface. When surfactants are present, this converging flow tends to concentrate them in these regions weakening the effect of surface tension, which is the only mechanism opposing the instability. Several analytical and numerical calculations are presented to substantiate this interpretation of the phenomenon. In addition to some idealized cases, the results of two-dimensional simulations of co-flowing jets and a rising drop are presented.