The serpentine belt drive system is used in the auto industry. To avoid thermal destruction inside the belt drive and improve the thermal fatigue life of pulley materials under a variety of operating conditions, the temperature information for each load case must be determined within only a few seconds. To this end, this paper proposes an advanced thermal model to calculate the temperature distribution of a serpentine belt drive at static state operating conditions in an efficient manner. In this model, using analytical and numerical methods, a set of equations is developed according to the thermal flows and heat exchanges occurring in the system. After calculating the thermal flows of each pulley and the belt temperature, the baseline numerical simulations are modified to output the temperature distribution for each pulley. In this manner, the time-consuming numerical calculations for each pulley are performed only once and then analytically modified to provide the temperature predictions for various designed load cases, which dramatically reduces the computational time while maintaining the accuracy. Furthermore, experiments were performed to obtain the temperature data, and the results exhibited a good agreement with the corresponding calculated results. The proposed model can thus be effectively utilized for several types of belt systems and the material development of pulleys.