The telencephalic basal ganglia (BG) of amniotes consist of two subdivisions, striatum and pallidum, which share many features, including development, cell types, neurotransmitter organization and hodology. In particular, these two subdivisions during development are defined on the basis of discrete gene expression patterns (genoarchitecture or genoarchitectonics). The characterization of the BG in the subpallium of representatives of the different classes of anamniote vertebrates was first approached in studies dealing with their localization, hodology and main neurochemical characteristics. Thus, it was proposed that an impressive degree of conservation exists across species. New insights can be gained by the comparative analysis of the expression of conserved transcription factors that distinctly define the striatal and pallidal components of the BG in all vertebrates. In addition, the expression of other genes that characterize neighboring regions of the BG is also useful to define the boundaries of each subdivision. Following this approach, we have analyzed the BG in the brain of juvenile representatives of amphibians, lungfishes, holosteans, Polypteriformes and Chondrichthyes. In addition, we briefly review previous data in teleosts and agnathans. The markers used include islet 1 and Dlx as striatal markers, whereas Nkx2.1 is essential for the identification of the pallidum. In turn, Pax6 and in particular Tbr1 are expressed in the pallium. These markers have been systematically analyzed in combination with neuronal markers of specific subpallial territories and cell populations, such as tyrosine hydroxylase, γ-aminobutyric acid, nitric oxide synthase, substance P and enkephalin. The results highlight that many genes share common distribution patterns and are arranged in conserved combinations whose identification has served to define homologies between components of the BG in distant species.