2024
DOI: 10.1002/for.3172
|View full text |Cite
|
Sign up to set email alerts
|

Forecast performance of noncausal autoregressions and the importance of unit root pretesting

Frédérique Bec,
Heino Bohn Nielsen

Abstract: Based on a large simulation study, this paper investigates which strategy to adopt in order to choose the most accurate forecasting model for mixed causal‐noncausal autoregressions (MAR) data generating processes: always differencing (D), never differencing (L), or unit root pretesting (P). Relying on recent econometric developments regarding forecasting and unit root testing in the MAR framework, the main results suggest that from a practitioner's point of view, the P strategy at the 10% level is a good compr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 37 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?