Forecasting a Short-Term Photovoltaic Power Model Based on Improved Snake Optimization, Convolutional Neural Network, and Bidirectional Long Short-Term Memory Network
Yonggang Wang,
Yilin Yao,
Qiuying Zou
et al.
Abstract:The precision of short-term photovoltaic power forecasts is of utmost importance for the planning and operation of the electrical grid system. To enhance the precision of short-term output power prediction in photovoltaic systems, this paper proposes a method integrating K-means clustering: an improved snake optimization algorithm with a convolutional neural network–bidirectional long short-term memory network to predict short-term photovoltaic power. Firstly, K-means clustering is utilized to categorize weath… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.