2019
DOI: 10.1016/j.resourpol.2019.02.017
|View full text |Cite
|
Sign up to set email alerts
|

Forecasting coking coal prices by means of ARIMA models and neural networks, considering the transgenic time series theory

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
33
0
2

Year Published

2019
2019
2023
2023

Publication Types

Select...
6
4

Relationship

0
10

Authors

Journals

citations
Cited by 84 publications
(36 citation statements)
references
References 32 publications
0
33
0
2
Order By: Relevance
“…Given that the time series forecasting can lose its prominence in the long run and sometimes is affected by new and frequent variables [12], the forecast horizon of this study was a medium-term horizon until 2022. The main application of the time series analysis is forecasting.…”
Section: Methodsmentioning
confidence: 99%
“…Given that the time series forecasting can lose its prominence in the long run and sometimes is affected by new and frequent variables [12], the forecast horizon of this study was a medium-term horizon until 2022. The main application of the time series analysis is forecasting.…”
Section: Methodsmentioning
confidence: 99%
“…ARIMA have relished beneficial applications in forecasting insurance, economics, energy, engineering, social, stock problems, and foreign exchange [72][73][74][75]. Critical literature review show that the accuracy of SC and ML techniques is superior to the ARIMA models in predicting time series problems [76][77][78][79][80].…”
Section: Literature Reviewmentioning
confidence: 99%
“…Peramalan nilai inflasi padi-padian, umbi-umbian, dan hasilnya tertera pada Tabel 3.Subkelompok padi-padian, umbiumbian, dan hasil-hasilnya terdiri atas komoditas beras, ketela pohon, mie basah, mie kering instant, tepung beras, dan tepung terigu.Berdasarkan perbandingan nilai inflasi padi-padian, umbi-umbian, dan hasil-hasilnya antara hasil peramalan dan nilai aktual, terlihat bahwa nilai peramalan pada tahun 2019 rata-rata lebih tinggi dari nilai inflasi aktual karena metode yang digunakan dalam peramalan ini adalah metode statik yang meramalkan nilai inflasi satu langkah kedepan sampai dengan waktu sekarang (Matyjaszek, Riesgo Fernández, Krzemień, Wodarski, & Fidalgo Valverde, 2019;Torbat, Khashei, & Bijari, 2018).Dibandingkan dengan nilai peramalan inflasi pada tahun 2020 ratarata nilai inflasi lebih rendah, mengingat perkiraan bulan Ramadhan dan Idul Fitri tahun 2020 adalah bulan April dan Mei, kemungkinan nilai inflasi aktual pada saat itu bisa lebih tinggi atau lebih rendah tergantung kebijakan pemerintah daerah provinsi Sulawesi Tengah dan Kota Palu dalam mengantisipasi situasi tersebut.…”
Section: Padi-padian Umbi-umbian Dan Hasilhasilnyaunclassified