2004
DOI: 10.2139/ssrn.499744
|View full text |Cite
|
Sign up to set email alerts
|

Forecasting Daily Variability of the S&P 100 Stock Index Using Historical, Realised and Implied Volatility Measurements

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

3
108
1
1

Year Published

2008
2008
2021
2021

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 98 publications
(114 citation statements)
references
References 61 publications
3
108
1
1
Order By: Relevance
“…They showed strong empirical evidence in favor of their proposal. Deo et al (2006) considered a long-memory stochastic volatility model and Koopman et al (2005) proposed a model combining unobserved components and longmemory. In a recent work, Hillebrand and Medeiros (2008) suggested a model that combines long memory with different types of nonlinearity.…”
Section: Some Stylized Facts In Financial Time Series and Univariate mentioning
confidence: 99%
“…They showed strong empirical evidence in favor of their proposal. Deo et al (2006) considered a long-memory stochastic volatility model and Koopman et al (2005) proposed a model combining unobserved components and longmemory. In a recent work, Hillebrand and Medeiros (2008) suggested a model that combines long memory with different types of nonlinearity.…”
Section: Some Stylized Facts In Financial Time Series and Univariate mentioning
confidence: 99%
“…With high frequency data, the long persistence in a series of realized volatilities is portrayed by a slow decay in the autocorrelation function (see e.g., Andersen and Bollerslev (1997), Andersen, Bollerslev, Diebold, and Ebens (2001)), and is modeled by means of fractionally integrated ARMA (ARFIMA) processes by Andersen, Bollerslev, Diebold, and Labys (2003), Oomen (2001) and Koopman, Jungbacker, and Hol (2005), among others.…”
Section: Introductionmentioning
confidence: 99%
“…by the DurbinLevinson algorithm, also gives an estimate of the prediction error variance σ 2 pred . Note that the simplified expression (17) still represents an unknown quantity but it could conceivably be approximated by Monte Carlo, for example using the normal predictive density that has mean given by (18) and variance σ 2 pred -recall though that this normal density should be truncated to an effective range of ±1/ √ a 0 . However, a very large number of replications would be required due to the heavy tails of the distribution of W 2 / (1 − a 0 W 2 ).…”
Section: Volatility Prediction Using Novasmentioning
confidence: 99%