2023
DOI: 10.32604/cmc.2023.029787
|View full text |Cite
|
Sign up to set email alerts
|

Forecasting Future Trajectories with an Improved Transformer Network

Abstract: An increase in car ownership brings convenience to people's life. However, it also leads to frequent traffic accidents. Precisely forecasting surrounding agents' future trajectories could effectively decrease vehicle-vehicle and vehicle-pedestrian collisions. Long-short-term memory (LSTM) network is often used for vehicle trajectory prediction, but it has some shortages such as gradient explosion and low efficiency. A trajectory prediction method based on an improved Transformer network is proposed to forecast… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 40 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?