2017
DOI: 10.1080/01621459.2016.1219259
|View full text |Cite
|
Sign up to set email alerts
|

Forecasting Generalized Quantiles of Electricity Demand: A Functional Data Approach

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
20
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 33 publications
(20 citation statements)
references
References 39 publications
0
20
0
Order By: Relevance
“…Finally, after obtaining the matrix of fitting parametersˆ j of the j-th node, the predicted quantile at time N for look-ahead time h isŷ j,N +h|N = x j,N +h|N Tˆ j (5) where x j,N +h|N ∈ R n j is newly input vector of the j-th node at time N for look-ahead time h,ŷ j,N +h|N ∈ R Q is a row vector constructed by all predicted quantiles, i.e.,ŷ…”
Section: B Probabilistic Forecasting Based On Linear Quantile Regresmentioning
confidence: 99%
See 1 more Smart Citation
“…Finally, after obtaining the matrix of fitting parametersˆ j of the j-th node, the predicted quantile at time N for look-ahead time h isŷ j,N +h|N = x j,N +h|N Tˆ j (5) where x j,N +h|N ∈ R n j is newly input vector of the j-th node at time N for look-ahead time h,ŷ j,N +h|N ∈ R Q is a row vector constructed by all predicted quantiles, i.e.,ŷ…”
Section: B Probabilistic Forecasting Based On Linear Quantile Regresmentioning
confidence: 99%
“…At the top level, the probabilistic forecasting can be extensively used for stochastic unit commitment, price forecasting, and electricity trading in the market [1]. At the intermediate level, the probabilistic forecasting is used to balance supply and demand in each zone [5], [6] or substation [7]. At the bottom level, prosumers can use probabilistic information to participate in energy trading and consumers can adjust electricity consumption pattern in the dynamic environment.…”
Section: Introductionmentioning
confidence: 99%
“…Demand forecasts are important for various levels of aggregation of the individual consumers. For example, grid management can benefit from the availability of predictions at the level of individuals, transformers, feeders, substations, balancing areas, cities, regions, and countries (Smith et al 2010, Cho et al 2013, Haben et al 2014, Sun et al 2016, Cabrera & Schulz 2017. In this context, the forecasting problem involves a hierarchy of time series, with levels consisting of differing degrees of aggregation.…”
Section: Introductionmentioning
confidence: 99%
“…However, in many applications, a mean prediction is not good enough. Full predictive distributions, also known as probabilistic forecasts, are required in applications where an assessment of the associated uncertainty is essential, for example in models of future disease progression (Küffner et al 2015), electricity demand (Cabrera and Schulz 2017), stock asset returns (Mitrodima and Griffin 2017), and counterfactual distributions (Chernozhukov et al 2013). In these applications, the prediction "takes the form of a predictive probability distribution over future quantities B Torsten Hothorn Torsten.Hothorn@uzh.ch 1 Institut für Epidemiologie, Biostatistik und Prävention, Universität Zürich, Hirschengraben 84, 8001 Zürich, Switzerland or events of interest" (Gneiting and Katzfuss 2014).…”
Section: Introductionmentioning
confidence: 99%