Forecasting Hydrogen Vehicle Refuelling for Sustainable Transportation: A Light Gradient-Boosting Machine Model
Nithin Isaac,
Akshay K. Saha
Abstract:Efficiently predicting and understanding refuelling patterns in the context of HFVs is paramount for optimising fuelling processes, infrastructure planning, and facilitating vehicle operation. This study evaluates several supervised machine learning methodologies for predicting the refuelling behaviour of HFVs. The LightGBM model emerged as the most effective predictive model due to its ability to handle time series and seasonal data. The selected model integrates various input variables, encompassing refuelli… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.