The present study aimed to use the autoregressive integrated moving average (ARIMA) model to forecast foodborne disease incidence in Shenzhen city and help guide efforts to prevent foodborne disease. The data of foodborne diseases in Shenzhen comes from the infectious diarrhea surveillance network, community foodborne disease surveillance network, and student foodborne disease surveillance network. The incidence data from January 2012 to December 2017 was used for the model-constructing, while the data from January 2018 to December 2018 was used for the model-validating. The mean absolute percentage error (MAPE) was used to assess the performance of the model. The monthly foodborne disease incidence from January 2012 to December 2017 in Shenzhen was between 954 and 32,863 with an incidence rate between 4.77 and 164.32/100,000 inhabitants. The ARIMA (1,1,0) was an adequate model for the change in monthly foodborne disease incidence series, yielding a MAPE of 5.34%. The mathematical formula of the ARIMA (1,1,0) model was (1 − B) × log(incidencet) = 0.04338 + εt/(1 + 0.51106B). The predicted foodborne disease incidences in the next three years were 635,751, 1,069,993, 1,800,838, respectively. Monthly foodborne disease incidence in Shenzhen were shown to follow the ARIMA (1,1,0) model. This model can be considered adequate for predicting future foodborne disease incidence in Shenzhen and can aid in the decision-making processes.