2020
DOI: 10.1108/jeas-04-2020-0038
|View full text |Cite
|
Sign up to set email alerts
|

Forecasting Islamic securities index using artificial neural networks: performance evaluation of technical indicators

Abstract: PurposeThe purpose of this study is to develop a precise Islamic securities index forecasting model using artificial neural networks (ANNs).Design/methodology/approachThe data of daily closing prices of KMI-30 index span from Aug-2009 to Oct-2019. The data of 2,520 observations are divided into training and test data sets by using the 80:20 ratio, which corresponds to 2016 and 504 observations, respectively. In total, 25 features are used; however, in model selection step, based on maximum accuracy, top ten in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

2
15
0
3

Year Published

2021
2021
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(20 citation statements)
references
References 67 publications
2
15
0
3
Order By: Relevance
“…This section technique is based on Aslam et al [5], The creation of a neural network capable of accurately forecasting a financial time series is a difficult problem. The following figures 1 are the various phases in this process.…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…This section technique is based on Aslam et al [5], The creation of a neural network capable of accurately forecasting a financial time series is a difficult problem. The following figures 1 are the various phases in this process.…”
Section: Methodsmentioning
confidence: 99%
“…They are capable of modeling nonlinear systems without being aware of the relationships between the input and output variables. The nonparametric ANN model may be favored over typical parametric statistical models in cases when the input data do not match the parametric model's assumptions or when the dataset contains big outliers [5]. Second, ANNs are approximations of universal functions.…”
Section: Introductionmentioning
confidence: 99%
“…Yavuz, (2019), BIST Katılım 30 ve 50 endekslerini, Markov zinciri analizi ile 0,0065 (artışta), 0,0232 (azalışta) ve 0,0297 (sabitte) mutlak hata ile tahmin ederken, Mar'i, Pratiwi, Oktanisa, & Utaminingrum, (2019) Jakarta İslami endeksini Gauss eliminasyonu, Cramer kuralı ve Gauss-Jordan katsayı belirleme yöntemleriyle sırasıyla, %0,43, %0,44, %0,83 ortalama mutlak yüzdesel hata (MAPE) değeri ile tahmin etmiştir. Aslam et al, (2020), 25 teknik indikatörü kullanarak, Pakistan KMI-30 İslami hisse senedi endeksini 5,29 MAPE değeri ile tahmin etmişlerdir. Bu tahmin yöntemlerinin yanı sıra, literatürde İslami hisse senedi endeksini LSTM ile tahmin eden az sayıda çalışma bulunmaktadır.…”
Section: Li̇teratür Taramasiunclassified
“…Tahmin modelinin girdi değişkenleri belirlenirken, literatürde yaygın olarak tercih edilen teknik indikatörler (Aslam, Mughal, Ali ve Mohmand, 2020;Doaei, Mirzaei ve Rafigh, 2021) veya makroekonomik göstergeler (Narayan, Phan, Sharma ve Westerlund, 2016;Umam, Ratnasari ve Herianingrum, 2019) kullanılmamıştır. Bunun yerine, endeks tabanlı bir yaklaşım izlenerek, XU100 endeksi (XU100), CBOE oynaklık endeksi (VIX), altın endeksi (GVZ) ve dolar endeksi (DXY) tahmin modelinin girdi değişkenleri olarak belirlenmiştir.…”
Section: Introductionunclassified
“…There is a massive literature on using ANN for forecasting financial data series such as stock index, exchange rate, gold, and oil prices, etc. (Aslam et al, 2020;Singh & Srivastava, 2017;Tealab et al, 2017;Xu et al, 2020b). On the other hand, there are specific topics in finance where limited studies have been conducted with ANN models.…”
Section: Introductionmentioning
confidence: 99%