Forecasting PM10 Levels Using Machine Learning Models in the Arctic: A Comparative Study
Paolo Fazzini,
Marco Montuori,
Antonello Pasini
et al.
Abstract:In this study, we present a statistical forecasting framework and assess its efficacy using a range of established machine learning algorithms for predicting Particulate Matter (PM) concentrations in the Arctic, specifically in Pallas (FI), Reykjavik (IS), and Tromso (NO). Our framework leverages historical ground measurements and 24 h predictions from nine models by the Copernicus Atmosphere Monitoring Service (CAMS) to provide PM10 predictions for the following 24 h. Furthermore, we compare the performance o… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.