2014
DOI: 10.1186/s13243-014-0008-x
|View full text |Cite
|
Sign up to set email alerts
|

Forecasting product returns for remanufacturing systems

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
9
0

Year Published

2015
2015
2022
2022

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 20 publications
(9 citation statements)
references
References 20 publications
0
9
0
Order By: Relevance
“…There is a lot of uncertainty in terms of quality, quantity, and timing of product returns particularly the end of life products. These uncertainties may result in inefficiency in planning and control of reverse supply chain [20]. The short-term forecasting is managed by the organization through tracking of sales from the distributors.…”
Section: Returned Products Acquisition and Collection Issuesmentioning
confidence: 99%
“…There is a lot of uncertainty in terms of quality, quantity, and timing of product returns particularly the end of life products. These uncertainties may result in inefficiency in planning and control of reverse supply chain [20]. The short-term forecasting is managed by the organization through tracking of sales from the distributors.…”
Section: Returned Products Acquisition and Collection Issuesmentioning
confidence: 99%
“…Umeda et al [103] describes the relation between product returns and demand for single-use cameras, photocopiers, and automatic teller machines based on empirical data. Liang et al [67] develop forecasting models to describe both the quantity and the quality of the return. Using different mathematical models, such as Bass diffusion model, Weibull distribution and inverse Gaussian functions, this study incorporates information of product sales, customer return behavior and product life expectancy.…”
Section: Overviewmentioning
confidence: 99%
“…“ The challenges for forecasting of product returns are mainly from two sources: lack of quality/credible data and unproven assumptions ” (Liang, Jin, & Ni, , p. 3). It is safe to conclude that returns forecasting remains open for contributions.…”
Section: Theoretical Backgroundmentioning
confidence: 99%