PurposeThis paper examines the problem of lack of historical data and inadequate consideration of factors influencing demand in the forecasting of demand for fast fashion clothing and proposes an improved Bass model for the forecasting of such a demand and the demand for new clothing products.Design/methodology/approachFrom the perspective of how to solve the lack of data and improve the precision of the clothing demand forecast, this paper studies the measurement of clothing similarity and the addition of demand impact factors. Using the fuzzy clustering–rough set method, the degree of resemblance of clothing is determined, which provides a basis for the scientific utilisation of historical data of similar clothing to forecast the demand for new clothing. Besides, combining the influence of consumer preferences and seasonality on demand forecasting, an improved Bass model for a fast fashion clothing demand forecast is proposed. Finally, with a forecasting example of demand for clothing, this study also tests the validity of the method.FindingsThe objective measurement method of clothing similarity in this paper solves the problem of the difficult forecasting of demand for fast fashion clothing due to a lack of sales data at the preliminary stage of the clothing launch. The improved Bass model combines, comprehensively, consumer preferences and seasonality and enhances the forecast precision of demand for fast fashion clothing.Originality/valueThe paper puts forward a scientific, quantitative method for the forecasting of new clothing products using historical sales data of similar clothing, thus solving the problem of lack of sales data of the fashion.