Forecasting returns with machine learning and optimizing global portfolios: evidence from the Korean and U.S. stock markets
Dohyun Chun,
Jongho Kang,
Jihun Kim
Abstract:This study employs a variety of machine learning models and a wide range of economic and financial variables to enhance the forecasting accuracy of the Korean won–U.S. dollar (KRW/USD) exchange rate and the U.S. and Korean stock market returns. We construct international asset allocation portfolios based on these forecasts and evaluate their performance. Our analysis finds that the Elastic Net and LASSO regression models outperform traditional benchmark models in predicting exchange rate and stock market retur… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.