2020
DOI: 10.1007/s12652-020-01762-0
|View full text |Cite
|
Sign up to set email alerts
|

Forecasting stock market return with nonlinearity: a genetic programming approach

Abstract: The issue whether return in the stock market is predictable remains ambiguous. This paper attempts to establish new return forecasting models in order to contribute on addressing this issue. In contrast to existing literatures, we first reveal that the model forecasting accuracy can be improved through better model specification without adding any new variables. Instead of having a unified return forecasting model, we argue that stock markets in different countries shall have different forecasting models. Furt… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 13 publications
(2 citation statements)
references
References 63 publications
0
1
0
1
Order By: Relevance
“…Evaluasi terhadap suatu aset dapat dilakukan dengan menggunakan imbal hasil saham tersebut, yang secara konvensional didefinisikan sebagai fungsi logaritma natural terhadap perubahan harga [1]. Namun, apakah imbal hasil saham di masa depan dapat diduga menjadi pertanyaan yang krusial dikemukakan oleh Ding, et.al [2]. Beberapa penelitian menunjukkan bahwa imbal hasil saham dapat diduga menggunakan variabel yang relevan seperti dividen [3]- [5].…”
Section: Pendahuluanunclassified
“…Evaluasi terhadap suatu aset dapat dilakukan dengan menggunakan imbal hasil saham tersebut, yang secara konvensional didefinisikan sebagai fungsi logaritma natural terhadap perubahan harga [1]. Namun, apakah imbal hasil saham di masa depan dapat diduga menjadi pertanyaan yang krusial dikemukakan oleh Ding, et.al [2]. Beberapa penelitian menunjukkan bahwa imbal hasil saham dapat diduga menggunakan variabel yang relevan seperti dividen [3]- [5].…”
Section: Pendahuluanunclassified
“…More recently, Michell and Kristjanpoller (2020) [ 19 ] employ GP to develop trading rules in the US stock market. Ding et al (2020) [ 20 ] apply GP to forecast future stock returns in different stock markets. Our paper extends the GP application to the oil market volatility forecasting, which is a crucial commodity market.…”
Section: Introductionmentioning
confidence: 99%