2021
DOI: 10.1186/s12913-021-06912-4
|View full text |Cite
|
Sign up to set email alerts
|

Forecasting the length-of-stay of pediatric patients in hospitals: a scoping review

Abstract: Background Healthcare management faces complex challenges in allocating hospital resources, and predicting patients’ length-of-stay (LOS) is critical in effectively managing those resources. This work aims to map approaches used to forecast the LOS of Pediatric Patients in Hospitals (LOS–P) and patients’ populations and environments used to develop the models. Methods Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses exte… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
5
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 12 publications
(6 citation statements)
references
References 46 publications
0
5
0
1
Order By: Relevance
“…Entretanto, as causas de internação variam amplamente na literatura, uma revisão sistemática 7 realizada com artigos internacionais no período de 1987 a 2017 com tempo de permanência médio de 3,39 dias a 18,02 meses identificou que a maioria dos estudos realizados na temática pediátrica em relação ao tempo de internação são nas UTIP neonatais e hospitais psiquiátricos e que um dos fatores prevalentes nesses estudos são crianças internadas com neoplasia hematológica por neutropenia febril. Todavia, dados da AMIB 9 mostraram que 43,75% das internações clínicas eram por causas infecciosas e a maior causa de internação cirúrgica era por problemas no sistema nervoso central (17,89%).…”
Section: Discussionunclassified
“…Entretanto, as causas de internação variam amplamente na literatura, uma revisão sistemática 7 realizada com artigos internacionais no período de 1987 a 2017 com tempo de permanência médio de 3,39 dias a 18,02 meses identificou que a maioria dos estudos realizados na temática pediátrica em relação ao tempo de internação são nas UTIP neonatais e hospitais psiquiátricos e que um dos fatores prevalentes nesses estudos são crianças internadas com neoplasia hematológica por neutropenia febril. Todavia, dados da AMIB 9 mostraram que 43,75% das internações clínicas eram por causas infecciosas e a maior causa de internação cirúrgica era por problemas no sistema nervoso central (17,89%).…”
Section: Discussionunclassified
“…Furthermore, prognostic models may be useful tools to help hospitals and healthcare systems to allocate resources efficiently [25][26][27][28]. By predicting the likelihood of, e.g., the length of hospital stay and adverse outcomes, healthcare facilities can plan ahead for the necessary beds and equipment, and for follow-up care that may be required to meet the specific needs of EPIs [25][26][27][28].…”
Section: Policy Developmentmentioning
confidence: 99%
“…As a quality measure, hospital LOS is reported to Centers for Medicare and Medicaid Services as part of the Hospital Inpatient Quality Reporting Program, and to the Agency for Healthcare Research and Quality 1,2 . Prior studies have attempted to use large clinical and administrative databases to accurately predict hospital LOS using both traditional statistical methods, 3,4 and machine learning methods 5–12 . While previous machine learning models have been applied to various specialties and clinical settings, few have been built specifically to predict LOS in the pediatric intensive care unit (PICU).…”
Section: Introductionmentioning
confidence: 99%
“…1,2 Prior studies have attempted to use large clinical and administrative databases to accurately predict hospital LOS using both traditional statistical methods, 3,4 and machine learning methods. [5][6][7][8][9][10][11][12] While previous machine learning models have been applied to various specialties and clinical settings, few have been built specifically to predict LOS in the pediatric intensive care unit (PICU).…”
mentioning
confidence: 99%
See 1 more Smart Citation