2013
DOI: 10.1016/j.irfa.2012.06.001
|View full text |Cite
|
Sign up to set email alerts
|

Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: International evidence

Abstract: The present study compares the performance of the long memory FIGARCH model, with that of the short memory GARCH specification, in the forecasting of multi-period ahead, 10-day-ahead and 20-day-ahead forecasting horizons relative to the short memory GARCH specification. Additionally, the results suggest that underestimation of the true VaR figure becomes less prevalent as the forecasting horizon increases. Furthermore, the GARCH model has a lower quadratic loss between actual returns and ES forecasts, for the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
19
0
19

Year Published

2014
2014
2023
2023

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 42 publications
(39 citation statements)
references
References 49 publications
1
19
0
19
Order By: Relevance
“…We select the parameters of the data generation process to coincide with the parameters obtained for the daily returns of the North American market index Standard & Poor's 500 (S&P500) before and during the subprime crisis. We attribute this selection to the representativeness of this index, which is also employed in the example with real data and in various simulation studies for risk assessment in finance, such as Christoffersen and Gonçalves (2005) and Degiannakis et al (2013), among others.…”
Section: Illustrationsmentioning
confidence: 99%
“…We select the parameters of the data generation process to coincide with the parameters obtained for the daily returns of the North American market index Standard & Poor's 500 (S&P500) before and during the subprime crisis. We attribute this selection to the representativeness of this index, which is also employed in the example with real data and in various simulation studies for risk assessment in finance, such as Christoffersen and Gonçalves (2005) and Degiannakis et al (2013), among others.…”
Section: Illustrationsmentioning
confidence: 99%
“…Para computar as previsões de VaR para múltiplos passos à frente, utilizouse o algoritmo de simulação de Monte Carlo apresentado por Degiannakis et al(2013) -6,211298 -6,222938 -6,219385 -6,225228 -6,210960 -6,221784 -6,218873 -6,223913 SBC -6,201843 -6,211908 -6,208354 -6,212621 -6,203081 -6,212329 -6,209418 - proposto por Engle e Ng (1993) para detectar a presença do efeito de alavancagem nos retornos, isto é, a estatística SBT testa se os impactos na volatilidade causados por retornos negativos são maiores que os impactos causados por retornos positivos. A hipótese nula do teste é de que não há diferença entre os impactos causados por retornos positivos e negativos.…”
Section: Cálculo De Var Para Múltiplos Passos à Frenteunclassified
“…Esses resultados diferem dos encontrados por Degiannakis et al(2013), cuja conclusão foi a de que os modelos FIGARCH não superavam os modelos GARCH com o aumento do horizonte de previsão para a modelagem dos retornos dos mercados dos países desenvolvidos.…”
Section: Estimativa Dos Parâmetros Utilizando Rolagens Diárias Para Aunclassified
See 2 more Smart Citations