2023
DOI: 10.3389/fenrg.2022.1090033
|View full text |Cite
|
Sign up to set email alerts
|

Foreign body intrusion monitoring and recognition approach in a power distribution room based on the improved YOLOv4 deep learning network

Abstract: In order to avoid safety problems caused by foreign bodies such as mice that may appear in the power distribution room and by demarcating the electronic fence area for key monitoring in the video surveillance screen, a foreign body intrusion monitoring and recognition approach in a power distribution room based on the improved YOLOv4 deep learning network is proposed. To optimize the detection effects, the YOLOv4 algorithm is improved from the aspects of network structure, frame detection, and loss function. A… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?