<p>Quantifying the responses of forest dynamics to fluctuations in the atmosphere, hydrosphere and land surface conditions at global scales have been rather challenging. Despite the understanding that favourable environmental conditions promote forest growth, the effects have been challenging to observe across different ecosystems and climate gradients. Based on a global annual time series of aboveground biomass (AGB) from 1992 to 2018, we present forest carbon changes and provide insights on the controls of atmospheric (e.g., climate), hydrosphere (e.g., soil water availability) and land surface (e.g., changes in forest cover) conditions on forest carbon changes from local to global scales. Our findings indicate a gradient of forest gains and losses across AGB classes, with regions with carbon stocks of 50-100 MgC ha<sup>-1</sup> depicting both the highest forest gains and losses. Furthermore, we observe that changes in forest carbon stocks were systematically positively correlated with changes in forest cover, while it was not necessarily the case with other environmental variables, such as air temperature and water availability at the uni-variate level. We also used a gradient boosted decision tree model and a variable importance metric (i.e., SHAP values) to demonstrate that atmospheric conditions largely dictate forest carbon changes followed by land surface and hydrosphere conditions. Interestingly, the observed functional relationships indicate a strong sensitivity of forest carbon changes to recent-past carbon stocks and both recent-past and concurrent atmospheric water demand. Regionally, we find evidence that carbon gains from long-term forest growth covary with long-term carbon sink inferred from atmospheric inversions at the ecosystem level. Our study quantifies the contributions from the atmosphere, hydrosphere, and land surface conditions to forest carbon changes and provides new insights into the underlying mechanisms of forest growth on the global carbon cycle.</p>