The stages of development of natural fire prevention method based on remote sensing data were considered. The case study is focused on Krasnoyarsk region forests. There was a rationale for selecting a study area on the basis of statistical fire data (FIRMS thermal hot spots 2016–2018) and a variety of fire conditions. The fire assessment was founded on the most informative fire factors—surface temperature, vegetation cover inhomogenuity and man-made load, which are derived by the natural-fire characteristics of the territory. These factors were evaluated by measuring parameters closed to them, respectively—radiobrightness temperature based on thermal emission, vegetation index NDVI and integral indicator of distance to settlements and roads. Materials from the Terra/Aqua, Sentinel-3, Landsat-8, Sentinel-2 satellites and Open Street Maps vector map layers were used as data sources. With use of statistical data, the relationship between above parameters and the present fire danger of Krasnoyarsk region was analyzed. Based on the results, we obtained different by forest rayon and fire season month correlation coefficients that described the contribution of individual factors to a fire danger, and threshold values of parameters for preventing fires. Then a sequence of stages of analytical and synthetic fire danger assessment as a study method was built. Validation of the method was performed in the most fire dangerous and representative in terms of fire conditions area in the south-west of the Krasnoyarsk Territory from April 1 to May 10, 2019. It showed sufficient accuracy (65 %) and reliability (58 %) of fire forecast.