2024
DOI: 10.1016/j.heliyon.2023.e23127
|View full text |Cite
|
Sign up to set email alerts
|

Forest fire surveillance systems: A review of deep learning methods

Azlan Saleh,
Mohd Asyraf Zulkifley,
Hazimah Haspi Harun
et al.
Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
3
0
1

Year Published

2024
2024
2025
2025

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 26 publications
(4 citation statements)
references
References 45 publications
0
3
0
1
Order By: Relevance
“…Some of the machine-learning and artificial intelligence techniques include support vector machine classifier, random forests, multilayer perception neural network, neuro-fuzzy models, etc. [104][105][106][107][108][109]. These models have their advantages and disadvantages.…”
Section: Lightning-induced Wildfire Modeling Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…Some of the machine-learning and artificial intelligence techniques include support vector machine classifier, random forests, multilayer perception neural network, neuro-fuzzy models, etc. [104][105][106][107][108][109]. These models have their advantages and disadvantages.…”
Section: Lightning-induced Wildfire Modeling Methodsmentioning
confidence: 99%
“…For instance, the support vector machine can use a small dataset to predict wildfire incidences and produce high-accuracy results [95]. Some researchers in the fire science community have also contended that the accuracy of the random forest model is higher [104]. That is, the random forest model can simulate complex interactions between input models, and it is efficient for large datasets.…”
Section: Lightning-induced Wildfire Modeling Methodsmentioning
confidence: 99%
“…Several studies have been presented recently to detect fire and smoke [23][24][25]. Talaat et al [26] proposed an improved fire detection approach for smart cities based on the YOLOv8 object detector algorithm; their approach is called the smart fire detection system (SFDS).…”
Section: Introductionmentioning
confidence: 99%
“…No obstante, la eficacia de estos modelos depende de la calidad y diversidad de los datos de entrenamiento (Diez, Kentsch, Fukuda, Caceres, Moritake & Cabezas, 2021). La variabilidad de los entornos donde ocurren los incendios plantea desafíos únicos para los modelos de DL, que deben ser entrenados con datos representativos para reconocer efectivamente entre situaciones benignas y peligrosas y al mismo tiempo evitar falsas alarmas o detecciones erróneas (Saleh, Zulkifley, Harun, Gaudreault, Davison & Spraggon, 2024). Para esto, se han propuesto enfoques multimodal que utilizan varios modos de datos como RGB, térmicos, hiperespectrales, tecnología láser infrarroja y datos meteorológicos para una detección robusta utilizando DL (Allison, Johnston, Craig & Jennings, 2016).…”
Section: Introductionunclassified