Recently, using image sensing devices to analyze air quality has attracted much attention of researchers. To keep real-time factory smoke under universal social supervision, this paper proposes a mobile-platform-running efficient smoke detection algorithm based on image analysis techniques. Since most smoke images in real scenes have challenging variances, it’s difficult for existing object detection methods. To this end, we introduce the two-stage smoke detection (TSSD) algorithm based on the lightweight framework, in which the prior knowledge and contextual information are modeled into the relation-guided module to reduce the smoke search space, which can therefore significantly improve the shortcomings of the single-stage method. Experimental results show that the TSSD algorithm can robustly improve the detection accuracy of the single-stage method and has good compatibility for different image resolution inputs. Compared with various state-of-the-art detection methods, the accuracy AP mean of the TSSD model reaches 59.24%, even surpassing the current detection model Faster R-CNN. In addition, the detection speed of our proposed model can reach 50 ms (20 FPS), which meets the real-time requirements, and can be deployed in the mobile terminal carrier. This model can be widely used in some scenes with smoke detection requirements, providing great potential for practical environmental applications.