Abstract:Variational particle-based Bayesian learning methods have the advantage of not being limited by the bias affecting more conventional parametric techniques. This paper proposes to leverage the flexibility of non-parametric Bayesian approximate inference to develop a novel Bayesian federated unlearning method, referred to as Forget-Stein Variational Gradient Descent (Forget-SVGD). Forget-SVGD builds on SVGD -a particle-based approximate Bayesian inference scheme using gradient-based deterministic updates -and on… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.