Recommender systems provide essential web services by learning users' personal preferences from collected data. However, in many cases, systems also need to forget some training data. From the perspective of privacy, users desire a tool to erase the impacts of their sensitive data from the trained models. From the perspective of utility, if a system's utility is damaged by some bad data, the system needs to forget such data to regain utility. While unlearning is very important, it has not been well-considered in existing recommender systems. Although there are some researches have studied the problem of machine unlearning, existing methods can not be directly applied to recommendation as they are unable to consider the collaborative information.In this paper, we propose RecEraser, a general and efficient machine unlearning framework tailored to recommendation tasks. The main idea of RecEraser is to divide the training set into multiple shards and train submodels with these shards. Specifically, to keep the collaborative information of the data, we first design three novel data partition algorithms to divide training data into balanced groups. We then further propose an adaptive aggregation method to improve the global model utility. Experimental results on three public benchmarks show that RecEraser can not only achieve efficient unlearning but also outperform the state-of-the-art unlearning methods in terms of model utility. The source code can be found at https://github.com/chenchongthu/Recommendation-Unlearning
CCS CONCEPTS• Information systems → Recommender systems; • Security and privacy → Privacy protections.