The development of the human wrist joint has been studied widely, with the main focus on carpal chondrogenesis, ligaments and triangular fibrocartilage. However, there are some discrepancies concerning the origin and morphogenetic time-table of these structures, including nerves, muscles and vascular elements. For this study we used serial sections of 57 human embryonic (n = 30) and fetal (n = 27) specimens from O'Rahilly stages 17-23 and 9-14 weeks, respectively. The following phases in carpal morphogenesis have been established: undifferentiated mesenchyme (stage 17), condensated mesenchyme (stages 18 and 19), pre-chondrogenic (stages 19 and 20) and chondrogenic (stages 21 and over). Carpal chondrification and osteogenic processes are similar, starting with capitate and hamate (stage 19) and ending with pisiform (stage 22). In week 14, a vascular bud penetrates into the lunate cartilaginous mold, early sign of the osteogenic process that will be completed after birth. In stage 18, median, ulnar and radial nerves and thenar eminence appear in the hand plate. In stage 21, there are indications of the interosseous muscles, and in stage 22 flexor digitorum superficialis, flexor digitorum profundus and lumbrical muscles, transverse carpal ligament and collateral ligaments emerge. In stage 23, the articular disc, radiocarpal and ulnocarpal ligaments and deep palmar arterial arch become visible. Radiate carpal and interosseous ligaments appear in week 9, and in week 10, dorsal radiocarpal ligament and articular capsule are evident. Finally, synovial membrane is observed in week 13. We have performed a complete analysis of the morphogenesis of the structures of the human wrist joint. Our results present new data on nervous and arterial elements and provide the basis for further investigations on anatomical pathology, comparative morphology and evolutionary anthropology.