This work presents a novel eutectic hydrate salt/self-curing acrylic resin formstable phase change materials (PCMs) composite (EHS/SCR) with favorable form-stable performances for heat energy storage. Further, to improve the surface stability, latent heat and thermal conductivity of the EHS/SCR particles, graphene oxide (GO) used as cladding materials is incorporated onto the surface of the EHS/SCR particles to prepare the GO modified EHS/SCR phase change composite (EGO). The obtained results indicate that the GO-targeted absorption model has achieved the enhancements in stability and thermal properties of EHS/SCR while making use of GO in an efficient and economical way. To be specific, with the introduction of GO of only 1.07 wt%, the thermal conductivity of 0.508 W/mÁK is achieved, the value shows a significant rise of 128.6% compared with the EHS/SCR of 0.222 W/mÁK. Additionally, the maximum latent heat of EGO-6 is up to 90.4 J/g, which exhibits a 3.19-fold increase compared against that of the uncoated EHS/SCR. Moreover, the prepared EGO composite PCM remain a good thermal cycling reliability after 300 thermal cycles. This work provides a novel opportunity to improve the performance of form-stable PCM composites with an intelligent manufactureoriented pattern.
K E Y W O R D Sgraphene oxide, hydrate salt, self-curing acrylic resin, surface stability, thermal conductivity