Security and reliability are the utmost importance facts in intelligent networked vehicles. Stochastic Petri Net and Z (SPZN) as an excellent formal verification tool for modeling concurrent systems, can effectively handles concurrent operations within a system, establishes relationships among components, and conducts verification and reasoning to ensure the system's safety and reliability in practical applications. However, the application of a system with numerous nodes to Petri Net often leads to the issue of state explosion. To tackle these challenges, a refinement and abstraction method based on SPZN is proposed in this paper. This approach can not only refine and abstract the Stochastic Petri Net but also establish a corresponding relationship with the Z language. In determining the implementation rate of transitions in Stochastic Petri Net, we employ the interval average and weighted average method, which significantly reduces the time and space complexity compared to alternative techniques and is suitable for expert systems at various levels. This reduction facilitates subsequent comprehensive system analysis and module analysis. Furthermore, by analyzing the properties of Markov Chain isomorphism in the case study, recommendations for minimizing system risks in the application of intelligent parking within the intelligent networked vehicle system can be put forward.