Cellular thiols including GSH (glutathione) and L-Cys (L-cysteine) are essential for cell signalling, growth and differentiation. L-Cys is derived from the extracellular thiol pool and is the rate-limiting compound for intracellular GSH biosynthesis. The present study investigated the effect of thiol-supplemented medium on cell growth, phenotype and total GSH of cultured hPMCs (human peritoneal mesothelial cells). Cells were cultured in medium M199 supplemented with 2% serum, with 'plus' or without 'minus' L-Cys and compared with medium supplemented with either β-ME (β-mercaptoethanol) (0.25 mmol/l) or the receptor tyrosine kinase ligand EGF (epidermal growth factor, 100 ng/ml). β-ME produced a disproportionate increase in total GSH compared with L-Cys and other thiols tested [(procysteine (2-oxothiazolidine-4-carboxylic acid) or NAC (N-acetyl-L-cysteine)], while growth and morphology were identical. Cell behaviour of primary hPMCs is characterized by the transition of fibroblastoid to cobblestone morphology during early passage. L-Cys and β-ME promoted a rapid MET (mesenchymal-to-epithelial transition) within 3 days of culture, confirmed by the presence of cobblestone cells, intact organelles, abundant microvilli, primary cilia and cortical actin. In contrast, EGF produced a biphasic response consisting of delayed growth and retention of a fibroblastoid morphology. During a rapid log phase of growth, MET was accompanied by rapid catch-up growth. Thiols may stabilize the epithelial phenotype by engaging redox-sensitive receptors and transcription factors that modulate differentiation. These data may benefit researchers working on thiol-mediated cell differentiation and strategies to regenerate damage to serosal membranes.