Interest in anti-unification, the dual problem of unification, is on the rise due to applications within the field of software analysis and related areas. For example, anti-unification-based techniques have found uses within clone detection and automatic program repair methods. While syntactic forms of anti-unification are enough for many applications, some aspects of software analysis methods are more appropriately modeled by reasoning modulo an equational theory. Thus, extending existing anti-unification methods to deal with important equational theories is the natural step forward. This paper considers anti-unification modulo pure absorption theories, i.e., some operators are associated with a special constant satisfying the axiom f (x, ε f ) ≈ f (ε f , x) ≈ ε f . We provide a sound and complete rule-based algorithm for such theories. Furthermore, we show that anti-unification modulo absorption is infinitary. Despite this, our algorithm terminates and produces a finitary algorithmic representation of the minimal complete set of solutions. We also show that the linear variant is finitary.