Behavior Trees (BTs) are a formalism increasingly used to control the execution of robotic systems. The strength of BTs resides in their compact, hierarchical and transparent representation. However, when used in practical applications transparency is often hindered by the introduction of implicit run-time relations between nodes, e.g., because of data dependencies or hardware-related ordering constraints. Manually verifying the correctness of a BT with respect to these hidden relations is a tedious and error-prone task. This paper presents a modular planning-based approach for automatically testing BTs offline at design time, to identify possible executions that may violate given data and ordering constraints and to exhibit traces of these executions to help debugging. Our approach supports both basic and advanced BT node types, e.g., supporting parallel behaviors, and can be extended with other node types as needed. We evaluate our approach on BTs used in a commercially deployed robotics system and on a large set of randomly generated trees showing that our approach scales to realistic sizes of more than 3000 nodes.