<p>Formamide has been recognized in the literature as a key species in the formation of the complex molecules of life, such as nucleobases. Furthermore, several studies reported the impact of mineral phases as catalysts for its decomposition/polymerization processes, increasing the conversion and also favoring the formation of specific products. Despite the progresses in the field, in situ studies on these mineral-catalyzed processes are missing. In situ UV-Raman characterization of the chemical evolution of formamide over amorphous SiO<sub>2</sub> samples, selected as a prototype of silicate minerals, was performed. The experiments were carried out after reaction of formamide at 160 &#176;C on amorphous SiO<sub>2</sub> (Aerosil OX50) either pristine or pre-calcined at 450 &#176;C, to remove a large fraction of surface silanol groups. Our measurements, interpreted on the basis of density functional B3LYP-D3 calculations (Figure 1), allow to assign the spectra bands in terms of specific complex organic molecules, namely, diaminomaleonitrile (DAMN), 5-aminoimidazole (AI), and purine, showing the role of the mineral surface on the formation of relevant prebiotic molecules.</p>