In recent years, tissue‐resident memory T cells (TRM) have attracted significant attention in the field of vaccine development. Distinct from central and effector memory T cells, TRM cells take up residence in home tissues such as the lung or urogenital tract and are ideally positioned to respond quickly to pathogen encounter. TRM are found to play a role in the immune response against many globally important infectious diseases for which new or improved vaccines are needed, including influenza and tuberculosis. It is also increasingly clear that TRM play a pivotal role in cancer immunity. Thus, vaccines that can generate this memory T cell population are highly desirable. The field of immunoengineering—that is, the application of engineering principles to study the immune system and design new and improved therapies that harness or modulate immune responses—is ideally poised to provide solutions to this need for next‐generation TRM vaccines. This review covers recent developments in vaccine technologies for generating TRM and protecting against infection and cancer, including viral vectors, virus‐like particles, and synthetic and natural biomaterials. In addition, it offers critical insights on the future of engineering vaccines for tissue‐resident memory T cells.