Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Magnesite (MgCO3) is the main source for production of magnesium and its compound. In Indonesia, magnesite is quite rare and can be only found in limited amount in Padamarang Island, Southeast Sulawesi Provence. Thus the properties of magnesite and the reactivity degree of the obtained product are of technological importance. The aim of this work was to analyze the characteristics of Padamarang magnesite under calcination and hydrothermal treatment processes. The processes were carried out at various temperatures with range of 150-900°C for 30 minutes. The solids were characterized with respect to their chemical and physical properties by using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). SEM image indicates that magnesite was formed from thin and flat hexagon sheets. The FTIR and XRD analysis disclose that MgO formed at temperature above 300°C, where as the magnesite sample also lost its mass around 50%. These results demonstrate that Padamarang magnesite decomposes to magnesium oxide and carbon dioxide at high temperature.Magnesit (MgCO3) merupakan sumber utama untuk produksi magnesium dan senyawa-senyawanya. Di Indonesia, magnesit cukup jarang dan hanya dapat ditemukan dalam jumlah yang terbatas di Pulau Padamarang, Propinsi Sulawesi Tenggara. Oleh karena itu sifat magnesit dan derajat reaktivitas dari produk-produk magnesit penting untuk diketahui. Penelitian ini bertujuan untuk menganalisis karakteristik magnesit Padamarang dengan perlakuan kalsinasi dan hidrothermal. Proses dilakukan pada temperatur yang bervariasi dari 150-900°C selama 30 menit. Sifat kimia dan fisika dari magnesit dikarakterisasi dengan menggunakan scanning electron microscopy dengan energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), dan X-ray diffraction (XRD). Gambar dari analisis SEM menunjukkan bahwa magnesit terbentuk dari lembaran-lembaran heksagonal yang tipis dan datar. Hasil analisis dengan FTIR dan XRD menunjukkan bahwa MgO terbentuk pada temperatur diatas 300°C, dimana sampel magnesit juga kehilangan massanya sekitar 50% pada suhu tersebut. Hal ini menunjukkan bahwa Magnesit Padamarang terdekomposisi menjadi magnesium oksida dan karbon dioksida pada temperatur tinggi.
Magnesite (MgCO3) is the main source for production of magnesium and its compound. In Indonesia, magnesite is quite rare and can be only found in limited amount in Padamarang Island, Southeast Sulawesi Provence. Thus the properties of magnesite and the reactivity degree of the obtained product are of technological importance. The aim of this work was to analyze the characteristics of Padamarang magnesite under calcination and hydrothermal treatment processes. The processes were carried out at various temperatures with range of 150-900°C for 30 minutes. The solids were characterized with respect to their chemical and physical properties by using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). SEM image indicates that magnesite was formed from thin and flat hexagon sheets. The FTIR and XRD analysis disclose that MgO formed at temperature above 300°C, where as the magnesite sample also lost its mass around 50%. These results demonstrate that Padamarang magnesite decomposes to magnesium oxide and carbon dioxide at high temperature.Magnesit (MgCO3) merupakan sumber utama untuk produksi magnesium dan senyawa-senyawanya. Di Indonesia, magnesit cukup jarang dan hanya dapat ditemukan dalam jumlah yang terbatas di Pulau Padamarang, Propinsi Sulawesi Tenggara. Oleh karena itu sifat magnesit dan derajat reaktivitas dari produk-produk magnesit penting untuk diketahui. Penelitian ini bertujuan untuk menganalisis karakteristik magnesit Padamarang dengan perlakuan kalsinasi dan hidrothermal. Proses dilakukan pada temperatur yang bervariasi dari 150-900°C selama 30 menit. Sifat kimia dan fisika dari magnesit dikarakterisasi dengan menggunakan scanning electron microscopy dengan energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), dan X-ray diffraction (XRD). Gambar dari analisis SEM menunjukkan bahwa magnesit terbentuk dari lembaran-lembaran heksagonal yang tipis dan datar. Hasil analisis dengan FTIR dan XRD menunjukkan bahwa MgO terbentuk pada temperatur diatas 300°C, dimana sampel magnesit juga kehilangan massanya sekitar 50% pada suhu tersebut. Hal ini menunjukkan bahwa Magnesit Padamarang terdekomposisi menjadi magnesium oksida dan karbon dioksida pada temperatur tinggi.
The objective of this study is to test if external fluids (e.g., hydrothermal) altered the Woodford Shale in the southeast Anadarko Basin and how the diagenesis caused by such fluids, particularly in mineralized fractures, has affected the reservoir quality and mechanical behavior of the Woodford Shale. Two Woodford Shale cores from the Anadarko Basin were sampled to identify diagenetic events, interpret their origin, and determine the diagenetic history of the shale. Thin sections for both cores were analyzed using reflected and transmitted light, cathodoluminescence (CL), and scanning electron microscopy to identify minerals and cross-cutting and textural relationships. X-ray computed tomography was conducted to further characterize fracture networks seen on the petrographic scale. Early diagenesis is dominated by events in the matrix and allochems, with later diagenesis dominated by events associated within fracturing and brecciation. The mineralized fractures and brecciated intervals contain complex mineralogies. Multiple minerals, interpreted to be hydrothermal in origin, are present, including magnesite, norsethite, witherite, gorceixite, potassium feldspar, sphalerite, chalcopyrite, and saddle dolomite. CL in minerals within fractures reveals evidence of evolving fluids and multiple fluid-flow events. Although porosity is present within pyrite framboids, between clay sheets, and as dissolution vugs within fractures and allochems, fracture porosity was destroyed by mineralization that filled the fractures and permeated into the matrix. Vitrinite reflectance data from both cores indicate a correlation between thermal maturity and level of hydrothermal alteration, with core A (0.80% [Formula: see text] [approximately 125°C]) displaying a lower amount of alteration and core C (approximately 1.5% [Formula: see text] [approximately 210°C]) displaying a higher amount of alteration. The extensive faulting present in the southeastern Anadarko Basin likely facilitated the movement of the hydrothermal fluids through the unit. The presence of hydrothermal minerals not only has implications for the thermal maturity and reservoir quality of the Woodford Shale, but it also contributes to the discussion of whether or not shales behave as open or closed systems.
The current paper presents a literature review on the studies of incorporation of magnesia (magnesium oxide) into Portland cement material from the geotechnical well construction perspective. Starting with a comparison of application conditions between civil construction and geotechnical well cementing, this work reviewed the Portland cement categorizations, magnesia manufacturing routes at first. Then, the physical-chemical-mechanical properties were investigated which includes the reactivity of magnesia, expansion influence from its hydration, and carbonation/dehydroxylation of magnesia blended Portland cement. The development of cement material hydration modeling methods is also summarized. Moreover, the experimental characterization methods have also been elucidated including composition determination, particle size analysis, volumetric variation measurement, compressive strength testing, shear-bond strength testing, transition state analysis, etc. Meanwhile, the results and conclusions were extracted from the literature. Through this route, a comprehensive understanding of the scientific research progress on magnesia blended Portland cement development for geotechnical well construction is derived. Additionally, it is concluded that incorporating magnesia into Portland cement can provide benefits for this material utilization in geotechnical well constructions provided the reasonable tuning among the characteristics of magnesia, the downhole surrounding conditions, and the formulation of the cement slurry. Satisfying these pre-conditions, the effective expansion not only mitigates the micro-annulus issues but also increases the shear bonding strength at the cementing interfaces. Moreover, the caustic magnesia introduction into Portland cement has the potential advantage on carbon dioxide geological sequestration well integrity compared with the Portland cement sheath without it because of the denser in-situ porous matrix evolvement and more stable carbon fixation features of magnesium carbonate. However, since the impact of magnesia on Portland cement strongly depended on its properties (calcination conditions, particle size, reactivity) and the aging conditions (downhole temperature, pressure, contacting medium), it should be noted that some extended research is worth conducting in the future such as the synchronized hydration between magnesia and Portland cement, the dosage limit of caustic magnesia in Portland cement in terms of CO2 sequestration and the corresponding mechanical properties analysis, and the hybrid method (caustic magnesia, Portland cement, and other supplementary cementitious materials) targeting the co-existence of the geothermal environment and the corrosive medium scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.