2013 IEEE 18th Conference on Emerging Technologies &Amp; Factory Automation (ETFA) 2013
DOI: 10.1109/etfa.2013.6648090
|View full text |Cite
|
Sign up to set email alerts
|

Formation and trajectory tracking of discrete-time multi-agent systems using block control

Abstract: The design of a decentralized discrete-time block control scheme, for a multi-agent system with a fixed topology, to achieve formation and trajectory tracking is proposed in this work. Each agent dynamics is represented either by a first-order or second-order discrete-time system, only the position of each agent's neighbors is measured and their velocity and acceleration are unknown, and exclusively the agents that are connected to the virtual agent have full information of the reference. Each agent is provide… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2014
2014
2017
2017

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 13 publications
0
2
0
Order By: Relevance
“…The mission consists in assuming a square formation with side of length 1 m and in moving the formation in the free environment. The global control law assumes the form in (7) as in [3], [13], [14] and is here omitted due to the lack of space. The mission lasts 40 s with a sampling time of T = 0.1 s, namely a duration of 400 steps.…”
Section: Theoremmentioning
confidence: 99%
See 1 more Smart Citation
“…The mission consists in assuming a square formation with side of length 1 m and in moving the formation in the free environment. The global control law assumes the form in (7) as in [3], [13], [14] and is here omitted due to the lack of space. The mission lasts 40 s with a sampling time of T = 0.1 s, namely a duration of 400 steps.…”
Section: Theoremmentioning
confidence: 99%
“…where K ∈ IR pN ×N n is a constant gain matrix, and u f f (k) ∈ IR pN ×N n represents a feed-forward term [3], [13], [14]. The control input of the generic i th vehicle would be obtained from (7) by using a selection matrix…”
Section: A System Modelingmentioning
confidence: 99%