“…For example, crystal growth assisted by structured pre-crystalline states (Gebauer et al, 2008;Dey et al, 2010;Demichelis et al, 2011), nucleation from metastable phases (Chung et al, 2009;Washington et al, 2012;Baumgartner et al, 2013;Maes et al, 2015), oriented attachment of crystallites (Banfield et al, 2000;Li et al, 2012;Nielsen et al, 2014), and growth emerging out of amorphous phases (Weiss et al, 2002;Politi et al, 2004;Killian et al, 2009;Savage and Dinsmore, 2009;Mahamid et al, 2010;Lechner et al, 2011;Salvalaglio et al, 2014;Ma et al, 2017;Pendola et al, 2018) have all been shown to alter growth in non-trivial ways, often resulting in complex structure formation that appear to defy the evolution of the system toward its ultimate lowest energy configuration. Moreover, these types of alternative growth mechanisms have been suggested in systems with widely different environmental conditions, from biological context such as protein crystal nucleation (Vekilov and Vorontsova, 2014), calcite growth (Weiss et al, 2002;Politi et al, 2004;Killian et al, 2009;, tissue mineralization (Wang et al, 2012;Weaver et al, 2012;Tao et al, 2019), magnetite nucleation and growth (Kuhrts et al, 2019;Mirabello et al, 2019;Rawlings et al, 2019), as well as inorganic contexts like cadmium selenide quantum dot growth (Washington et al, 2012), iron oxide growth (Banfield et al, 2000;Baumgartner et al, 2013;Dideriksen et al, 2015), and colloidal microparticle crystallization (Savage et al, 2...…”