This paper investigates the formation-containment control of second-order multiagent systems with intermittent communication. Distributed coordination control algorithms are proposed under aperiodic intermittent communication, where each agent only communicates with its neighboring agents on some disconnected time intervals. By means of constructing Lyapunov functions, sufficient convergence conditions are obtained for the leaders reaching a prescribed formation asymptotically and the followers converging into the convex hull formed by leaders asymptotically, respectively. Besides, sufficient convergence conditions are also provided for second-order multiagent systems converging to the desired formation-containment under time-varying communication delay and intermittent communication. Finally, the validity of theoretical results is illustrated by numerical simulations.