The advances in deep learning have revolutionized the field of artificial intelligence, demonstrating the ability to create autonomous systems with a high level of understanding of the environments where they operate. These advances, as well as new tasks and requirements in space exploration, have led to an increased interest in these deep learning methods among space scientists and practitioners. The goal of this review article is to analyze the latest advances in deep learning for navigation, guidance, and control problems in space. The problems of controlling the attitude and relative motion of spacecraft are considered for both traditional and new missions, such as orbital service. The results obtained using these methods for landing and hovering operations considering missions to the Moon, Mars, and asteroids are also analyzed. Both supervised and reinforcement learning are used to solve such problems based on various architectures of artificial neural networks, including convolutional and recurrent ones. The possibility of using deep learning together with methods of control theory is analyzed to solve the considered problems more efficiently. The difficulties that limit the application of the reviewed methods for space applications are highlighted. The necessary research directions for solving these problems are indicated.