This paper describes the development of an optimization-based cooperative planning system for the efficient routing and scheduling of extended flight formations. This study considers the use of formation flight as a means to reduce the overall fuel consumption in long-haul airline operations. It elaborates on the operational implementation of formation flight, particularly focusing on the formation flight routing. A completely decentralized approach is presented, in the sense that formation flight is not planned pre-flight and is not subjected to any predefined routing restrictions. A greedy communication scheme is defined through which all participating aircraft are allowed to communicate with neighboring aircraft in order to establish flight formations in flight. A constraint on the formation-flight-induced additional flight time is introduced in order to suppress the occurrence of large detours in the assembly of flight formations. A transatlantic case study is presented that considers 347 eastbound flights. Assuming a 10% fuel flow reduction for any trailing aircraft in a formation, the overall network-wide fuel savings were estimated at 4.3% at the expense of an additional flight time of 10.3 min per flight on average. In this transatlantic long-haul scenario, a formation flight usage rate of 73% was realized.