Due to many factors, the electrical explosion spraying process is not stable, which directly causes unstable coating quality and structure. Electron beam treatment may be used to improve the surface and modified structure of coatings sprayed by electrical explosions. In this study, a new TiB2–Ag metal matrix composite coating was deposited by electrical explosion spraying and modified by electron beam treatment. The prepared coatings were characterized by surface macro- and microanalysis, XDR, cross-section SEM, and TEM. The composition of the spray-coating phase differs from sample to sample. The electron beam treatment normalized the phase composition. Ag TiB2 B2O became the main phase in the modified coating. Increasing the pulse energy density and duration leads to a reduction in the low-melting Ag phase and the formation of copper contact phases due to heating and melting of the copper substrate by excess electron beam energy. The coating structure consists of a silver matrix and TiB2 inclusions. The electron beam treatment did not affect the structure; however, the microstructure of the coating transformed into a cellular crystallization structure. The silver matrix nanostructure was transformed into a nanocrystalline structure with an average crystal size ranging from tens to hundreds of nanometers.