Manipulating the transport and assembly of colloidal particles to form segregated bands or ordered supracolloidal structures plays an important role in many aspects of science and technology, from understanding the origin of life to synthesizing new materials for next-generation manufacturing, electronics, and therapeutics. One commonly used method to direct colloidal transport and assembly is the application of electric fields, either AC or DC, due to its feasibility. However, as colloidal segregation and assembly both require active redistribution of colloidal particles across multiple length scales, it is not apparent at first sight how a DC electric field, either externally applied or internally induced, can lead to colloidal structuring. In this Perspective, we briefly review and highlight recent advances and standing challenges in colloidal transport and assembly enabled by DC electrokinetics.