Abstract-For contacting boron emitters by screen-printing metal pastes, up to now, it has been necessary to add a small amount of Al to the Ag paste to facilitate a reasonable contact resistivity. With the addition of Al to the Ag paste, deep Ag/Al spikes appear, which can be deep enough to penetrate the emitter and, therefore, affect the emitter and space charge region, and, finally, affect the performance of the solar cell. In this paper, a transmission electron microscopy (TEM) analysis of these Ag/Al spikes is presented. The crystalline nature of the Ag/Al spikes is revealed for different surface structures of the crystalline Si wafer and different Al contents in the screen-printing paste. This result is confirmed by X-ray diffraction measurements of etched-back contacts. Additionally, TEM energy-dispersive X-ray spectroscopy facilitates the examination of the Si-rich inclusions found in the Ag/Al spikes. They prove to be multicrystalline Si precipitates with at least 99 at% Si. The observations help to understand the contact formation process of Al containing Ag screen-printing pastes and support the previously presented model. Index Terms-Ag/Al, boron emitter, crystallinity, screenprinting, transmission electron microscopy (TEM), X-ray diffraction (XRD).