In recent years, structured laser beams for shaping inverse energy flow regions: regions with a direction of energy flow opposite to the propagation direction of a laser beam, have been actively studied. Unfortunately, many structured laser beams generate inverse energy flow regions with dimensions of the order of the wavelength. Moreover, there are significant limitations to the location of these regions. Here, we investigate the possibility of controlling inverse energy flow distributions by using the generalization of well-known cylindrical vector beams with special polarization symmetry—vector Lissajous beams (VLBs)—defined by two polarization orders (p, q). We derive the conditions for the indices (p, q) in order, not only to shape separate isolated regions with a reverse energy flow, but also regions that are infinitely extended along a certain direction in the focal plane. In addition, we show that the maximum intensity curves of the studied VLBs are useful for predicting the properties of focused beams.