This paper describes the synthesis of Eu(III)doped ZnB 2 O 4 (B = Al(III) or Ga(III)) nanospinels with Eu(III) concentrations varying between 1% and 15.6%. The synthesis was achieved through a microwave (MW) synthetic methodology producing 3 nm particles by the thermal decomposition of zinc undecylenate (UND) and a metal 2,4pentanedionate (B(acac) 3 , B = Al 3+ or Ga 3+ ) in oleylamine (OAm). The nanospinels were then ligand exchanged with the β-diketonate, 2-thenoyltrifluoroacetone (tta). Using tta as a ligand on the surface of the particles resulted in soluble materials that could be embedded in lens mimics, such as poly(methyl methacrylate) (PMMA). Through a Dexter energy transfer mechanism, tta efficiently sensitized the Eu(III) doped within the nanospinels, resulting in red phosphors with intrinsic quantum efficiencies (QEs) and QEs in PMMA as high as 50% when excited in the UV. Optical measurements on the out of batch and tta-passivated nanospinels were done to obtain absorption, emission, and lifetime data. The structural properties of the nanospinels were evaluated by ICP-MS, pXRD, TEM, FT-IR, EXAFS, and XANES.