Silicon is one of the most studied materials, yet questions remain unanswered about its unusual property of growing a self-limiting native oxide that attains its final thickness in a matter of hours yet months later has not grown further. For the first time, we have explored this self-limiting growth in terms of repulsive van der Waals (vdW) forces generated by the combination of material properties inherent to the system. These repulsive forces represent an energy barrier preventing additional oxidizing chemicals, mainly oxygen and water, from adsorbing on the surface as well as hindering diffusion of those that do adsorb toward the interface. We have also proven that this native oxide can be increased in thickness at room temperature and without reactive species by changing the oxidation environment to one predicted by theory to result in attractive vdW forces, thus allowing oxygen/water to interact with the surface more freely.